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B Process for identifying exascale
ENERGY applications and technology for DOE
missions ensures broad community input

« Town Hall Meetings April-June 2007

« Scientific Grand Challenges
Workshops Nov, 2008 —- Oct, 2009
- Climate Science (11/08),
- High Energy Physics (12/08),
- Nuclear Physics (1/09),
- Fusion Energy (3/09),
- Nuclear Energy (5/09),
- Biology (8/09),
- Material Science and Chemistry (8/09),
- National Security (10/09)

« Exascale Steering Committee
- “Denver” vendor NDA visits 8/2009
- SCO09 vendor feedback meetings
- Extreme Architecture and Technology
Workshop 12/2009
» International Exascale Software
Project

MISSION IMPERATIVES

- Santa Fe, NM 4/2009 FUNDAMENTAL SCIENCE
- Paris, France 6/2009
- Tsukuba, Japan 10/2009
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s DOE mission imperatives require simulation
ENERGY and analysis for policy and decision making

* Climate Change: Understanding, mitigating | —
and adapting to the effects of global N age
warming

- Sea level rise
- Severe weather
Regional climate change
- Geologic carbon sequestration

* Energy: Reducing U.S. reliance on foreign
energy sources and reducing the carbon
footprint of energy production

Reducing time and cost of reactor design and
deployment

- Improving the efficiency of combustion energy
sources

* National Nuclear Security: Maintaining a
safe, secure and reliable nuclear stockpile
- Stockpile certification
Predictive scientific challenges

Real-time evaluation of urban nuclear
detonation

Accomplishing these missions requires exascale resources.
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A ERSC A Revolution is Underway
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Rapidly Changing Technology Landscape
— Evolutionary change between nodes (70x more explicit parallelism)

— Revolutionary change within node (700x more parallelism,
with diminished memory capacity and bandwidth)

— Multiple Technology Paths (GPU, manycore/embedded, x86/PowerX)

The technology disruption will be pervasive (not just exascale)
— Assumptions that our current software infrastructure is built
upon are no longer valid
— Applications, Algorithms, System Software will all break
— As significant as migration from vector to MPP (early 90’s)

Need a new approach to ensuring continued application
performance improvements
— This isn’t just about Exaflops — this is for all system scales
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Technology Paths to Exascale

Introducing the “swim lanes”
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. aZx4 Technology Paths to Exascale
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 Leading Technology Paths (Swim Lanes)

— Multicore: Maintain complex cores, and replicate
(x86 and Power7)

— Manycore/Embedded: Use many simpler, low power
cores from embedded (BlueGene)

— GPU/Accelerator: Use highly specialized processors
from gaming/graphics market space (NVidia Fermi,
Cell, Intel Knights Corner/Larrabee)

 Risks in Swim Lane selection
— Select too soon: Users cannot follow
— Select too late: Fall behind performance curve

— Select incorrectly: Subject users to multiple
i -disruptive technology changes N \



L. dAXXdNavigating Technology Phase Transitions
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. 1 WIll NOE be easier if we walit

 The identified problems will not get easier or

cost less if we wait

— A 1 Petaflop system TODAY contains ~200,000 cores and is extremely
difficult to program

— If we do nothing: a 1 Petaflop system in 2018 will still contain ~200,000
cores, will have even more constrained bandwidth (memory and
interconnect), and will STILL be difficult to program! (but at least it fits
into a single rack)

* Investments in exascale computing are

necessary to advance all scales of computing
systems

W= Office of DOE Exascale Initiative Technical Roadmap /\I A
é Science _ /_\H
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Power Crisis in HPC
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, Current Technology Roadmap
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, ... and the power costs will still
SCIENTIFIC COMPUTING CENTER be Stag ge ri n g
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$1M per megawatt per year! (with CHEAP power)
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- TTT Primary Design Constraint:
SCIENTIFIC COMPUTING CENTER P O WE R
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 Total Energy = Active Power + Leakage Power

« Active Power=C*V2*F
— This is energy required to charge & discharge capacitance of transistor
— Dennard recognized capacitance is reduced proportional to die shrink
— Power neutral if you drop supply voltage and increase clock frequency

* Leakage Power =V * | aqe
— Voltage is so low that cannot turn transistor entirely on or off

3 office 9P transistors must either “leak” or run much slower :'}I A
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Primary Design Constraint:
POWER
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 No room for Dennard scaling (leakage power caught up to us)

« Without changes, we will get exponential growth in power

 So, clock frequencies stalled in 2002 (Patterson Graph)
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The Challenge

Where do we get a 1000x improvement in
performance with only a 10x increase in power?

How do you achieve this in 10 years with a
finite development budget?

>4 Office of crered]
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, mWhere do we get 1000x performance
B — improvement for 10x power?

1. Processors

2. On-chip data movement

3. System-wide data movement
4. Memory Technology

5. Resilience Mechanisms

IS5, tice of creeesd] ‘Q
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TS Processors: What are the problems?
EEEEEEEEEEEEEEEEEEEEEE (Lessons from the Berkeley View)
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« Current Hardware/Lithography Constraints

— Power limits leading edge chip designs
* Intel Tejas Pentium 4 cancelled due to power issues

— Yield on leading edge processes dropping dramatically
« IBM quotes yields of 10 — 20% on 8-processor Cell

— Design/validation leading edge chip is becoming unmanageable
» Verification teams > design teams on leading edge processors

« Solution: Small Is Beautiful
— Simpler (5- to 9-stage pipelined) CPU cores
« Small cores not much slower than large cores
— Parallel is energy efficient path to performance:CV2F
* Lower threshold and supply voltages lowers energy per op

— Redundant processors can improve chip yield
» Cisco Metro 188 CPUs + 4 spares; Sun Niagara sells 6 or 8 CPUs

— Small, regular processing elements easier to verify

~
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" Low-Power Design Principles

EEEEEEEEEEEEEEEEEEEEEE
CCCCCCCCCCCCCCCCCCCCCCCCC

Tensilica XTensa

Cubic power improvement with
Intel Atom lower clock rate due to V2F

1l

« Slower clock rates enable use
of simpler cores

1y

« Simpler cores use less area
(lower leakage) and reduce
cost

« Tailor designto application to

REDUCE WASTE
This is how iPhones and MP3 players are designed to maximize battery life
d mjﬂ.gu;ze COSt rrr:rrr |/|\|
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" Low-Power Design Principles
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Powerb5 (server)

— 120W@1900MHz

— Baseline

Intel Core2 sc (laptop) :
— 15W@1000MHz

— 4x more FLOPs/watt than
baseline

Intel Atom (handhelds)
— 0.625W@800MHz
— 80x more
Tensilica XTensa DP (Moto Razor) :
— 0.09W@600MHz
— 400x more (80x-120x sustained)

Tensilica XTensa

Intel Atom

-~
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r Low Power Design Principles
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Tensilica XTensa

Power5 (server)

- 120W@1900MHz

— Baseline

Intel Core2 sc (laptop) :
— 15W@1000MHz

— 4x more FLOPs/watt than
baseline

Intel Atom (handhelds)
— 0.625W@800MHz
— 80x more
Tensilica XTensa DP (Moto Razor) :
— 0.09W@600MHz
— 400x more (80x-100x sustained)

Even if each simple core is 1/4th as computationally efficient as complex

core, you can fit hundreds of them on a single chip and still be 100x mo;a\‘
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Scale-out for Planar geometry

Office of
Science
'NT OF ENERGY

4aZxxa Future of On-Chip Architecture
(San Diego Meeting)

« ~1000-10k simple cores /Chip
— 4-8 wide SIMD or VLIW bundles
— Either 4 or 50+ HW threads

* On-chip communication Fabric

— Low-degree topology for on-chip
communication (torus or mesh)

— Scale cache coherence?
— Global (nonCC memory)
— Shared reqister file (clusters)

« Off-chip communication fabric
— Integrated directly on an SoC
— Reduced component counts
— Coherent with TLB (no pinning)



.33 projected Parallelism for Exascale
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How much parallelism must be handled by the program?
From Peter Kogge (on behalf of Exascale Working Group), “Architectural Challenges at the Exascale Frontier”, June 20, 2008

Need 1Million-way parallelism to reach an Exaflop . ..
And possibly another 100x just to hide latency

22
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Conclusion: Solving Logic Power
Drives Move to Massive Parallelism

1.E+09 billion per cycle
Future HPC must move ... ]
to simpler power-
. . . ? 1 E+06 1 million| per cycle
efficient core designs 2
— Embedded/consumer § et —
. . B 1.E+03 s er cycle
electronics technology is :
central to the future of HPC
— Convergence ineVitabIe 1lE+0'(I)I'II72 :1/78 1I1Iu8(;/ 1/1/84 1/1/88 11792 1M/96 1/1/00 1/1/04 1/1/08 1MM2 1711116 171720
because It Optlmlzes bOth ‘ ¢ Top10 ®™ TopSystem ———-Top1Trend X Historical Heavy NodeProjections‘

cost and power efficiency

the Exascale Frontier”, June 20, 2008

Consequence is massive on-chip parallelism
— A thousand cores on a chip by 2018

— 1 Million to 1 Billion-way System Level Parallelism

— Must express massive parallelism in algorithms and pmodels
— Must manage massive parallelism in system software

Office of
Science
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How much parallelism must be handled by the program?
From Peter Kogge (on behalf of Exascale Working Group), “Architectural Challenges at
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The Cost of Data Movement

How do those cores talk to each other?
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Photonics requires no redrive
and passive switch little power
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Cost to move a bit on copper wire:
- energy = bitrate * Length® / cross-section area

J
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The problem with Wires:

Energy to move data proportional to distance

Wire data capacity constant as feature size shrinks
Cost to move bit proportional to distance

~1TByte/sec max feasible off-chip BW (10GHz/pin)

Photonics reduces distance-dependence of bandwidth

X (5%
Office of
Loclence
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Copper requires to signal amplification

even for on-chip connections

RX
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TX TX X AA




WERSC The Cost of Data Movement
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The Cost of Data Movement

10000 SMP MPI
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100 CMP Cost of a FLOP
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LAEXH3 The situation will not improve in 2018
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Energy Efficiency will require careful management of data locality
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Important to know when you are on-chip and when data is off-chipl.
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Locality Management is Key

Horizontal Locality Management

Office of
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y Management is Key

Vertical Locality Management Horizontal Locality Management
* Movement of data up and - Movement of data between
down cache hierarchy processors
— Cache virtualizes notion of on- — 10x lower latency and 10x higher
chip off-chip bandwidth on-chip

— Need to minimize distance of

— Software managed memor
9 y horizontal data movement

(local store) is hard to program
(cell) « Encode Horizontal locality into

memory address

* Vi | Local stor
rtual Local store — Hardware hierarchy where high-order

— Use conventional cache for bits encode cabinet and low-order bits
portability encode chip-level distance

— Only use SW managed « Map local-store into global
memory only for performance address space
critical code — Hierarchical Partitioned Global

— Repartition as needed Address space

IS5, Qtice of ,f,}| A
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Projections of Memory Density

Improvements

Memory density is doubling every three years; processor logic is every two

*Project 8Gigabit DIMMs in 2018
*16Gigabit if technology acceleration (or higher cost for early release)

*Storage costs (dollars/Mbyte) are dropping gradually compared to logic costs

Megabits/chip

Industry assumption: $1.80/memory ch

Evolution of memory density

10000
1000 -",'D—’A ' 2X/3yrs
[
100 —-
4X/3yrs
10 Y -
1 ¢ T 1 1 T T
1985 1990 1995 2000 2005 2010
Year mass production starts
Office of
Science

U.S. DEPARTMENT OF ENERGY

2015

ip_is median commodity cost

¢ 1Mb

n 4Mb
16Mb
64Mb

x 128Mb

® 256Mb

0512Mb

A1Gb
2Gb
4Gb

Cost of Computation vs. Memory

100
10 ‘\\
1
H\A‘“
0.01 <
0.001
2 2, % i

B Dollars/Mbyte A Dollarss/MFLOP

The cost to sense, collect, generate and calculate data is declining
much faster than the cost to access, manage and store it

"
Source: David Turek, IBM :,}| ‘Q
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TS Cost of Memory Capacity

$600.00

$500.00

= Cost in $M (8 gigabit modules)

$400.00
-@ Cost in $M (16 Gigabit modules)

$300.00

—1/2 of $200M system

Cost in Millions of Dollars

$200.00

$100.00

$0.00
16 32 64 128 256

Petabytes of Memory

Forces us to strong scaling /«\I A

&>y Office of . : .
@ science  Forces us to memory conservative communication (GAS)
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g Exascale Memory Power (_30nsum
et (San Diego Meeti ng)

 Power Consumption with
standard Technology Roadmap

12 10.6

FPU
& Memory

Interconnect

70 Megawatts total

Office of
Science

U.S. DEPARTMENT OF ENERGY

« Power Consumption with Investment in
Advanced Memory Technology

FPU

& Memory

12 10.6 Interconnect

-

20 Megawatts total

Phase 11 Phase 111

Capacity/Cube: 5I2MB —— 2GB 2GB

Bandwidth/Cube: 128 GB/s 128 GB/s — 5 256GB/s
Energy/bit: 10,0p)] ——>7.0p)] ——> 5.0pJ




4axma Memory Technology
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B e System Sco pe
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Investment enables

10 improvement in bandwidth
5/ (and hence improves

0ot o1 o2 o5 ' | application breadth)

Bytes/FLOP ratio (# b

Application performance and Power pushes us to lower I‘
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* On chip:
— Optical interconnect enabled with Si
photonic ring resonators
— Integrates with conventional CMOS

— Up to 27x power improvement

« Off Chlp (a) Off state (b) On state

— DDR interface power hungry
* Cu line capacitance
« Large voltage swing
— Optical link much more efficient
« Very small voltage modulation required
» 50x reduction in interface power

» Unified optical fabric to reduce optical /
electrical conversion

» Stacking to improve density

B = g

WZ5  Office of Wiring of a single channel DDR to the
é Science Memory controller (Intel)
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e Looking Beyond DRAM
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* Resistive Change RAM (ReRAM) _LWL
— Nonvolatile - no refresh required! ._lﬂ_{[
— No high-voltage requirement N :L
— Less energy / write (compared to FLASH)
— More robust than FLASH
* More cycles to cell wear out
— Lower read energy than DRAM U'm:_"" AN
« <1V read-out voltage
— Similar density to flash
 MLC capable
» 2-4x DRAM
— Read / write speeds comparable (or better!) than DRAM
— Integrates very well with existing CMOS processes

SL or Anode

Overall 10x reduction in power with a 4x increase in density

~
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W ERSC Conclusions
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 Memory technology requires major
reorganization (if domestic industry stays alive)
— More ranks/banks, Less over-fetch, new drivers
— Chip stacking or optical memory interfaces
— New nonvolatile memory technologies

* Failure to invest in memory technology means

— We will have to live with less memory (more
emphasis on strong scaling)

— We will have lower memory bandwidth/
computational performance (< 0.01 bytes/flop)
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Fault Resilience

Chip with FIT rate 1000 fails once
every 16 years

A room full of them will fail every
30 seconds
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W ERSC] Fault Tolerance/Resilience
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 Hard Errors: proportional to component count
— Spare cores in design (Cisco Metro)
— SoC design (fewer components and fewer sockets)
— Use solder (not sockets)
— Fewer sockets (pushes us to 10TF chip to keep # sockets const.)

« Soft Errors: cosmic rays randomly flip bits
— Simpler low-power cores expose less surface area
— ECC for memory and caches
— On-board NVRAM controller for localized checkpoint
— Checkpoint to neighbor for rollback (LLNL SCR)

« Silent errors: Sometimes RAID & ECC are not enough
— End-to-End protection schemes (ZFS)
— Byzantine Fault Tolerance (BFT)

~
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Industry Trends in Fault
SCIENTIFIC COMPUTING CENTER Re S i I i e n Ce

* Industry must maintain
constant FIT rate per node

@ Windows OS B Hard drive OCPU O Memory

— ~1000 failures in time e
 Moore’s law gets us 100x 0000 Il
improvement o000
— But still have to increase S 10,000
node count by 10x g 1000 - - - ]
- So we will own 10x worse &
FIT rate |
— MTTI 1week to 1 day :
— MTTI 1 day to 1 hour 1998 (Win98) 1999 (Win NT) 2000 (Win 2000) 2001 (Win XP)

Figure 2. Failures in billions of hours of operation.>*

* Localized checkpointing
— LLNL SCR to node-local NVRAM
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Co-Design

Involve Applications Developers in
Navigating Complex Trade-offs
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APersc Changing Notion of
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If you pay 5% more to double the FPUs and get 10%
improvement, it’s a win (despite lowering your % of peak
performance)

If you pay 2x more on memory BW (power or cost) and get
35% more performance, then it’s a net loss (even though %
peak looks better)

Real example: we can give up ALL of the flops to improve
memory bandwidth by 20% on the 2018 system

We have a fixed budget
— Sustained to peak FLOP rate is wrong metric if FLOPs are cheap

— Balance involves balancing your checkbook & balancing your
power budget

— Requires a application co-design make the right trade-offs

Office of r:'}l m



DOE Roadmap: The Trade Space for
mowa, eneror sescsen Exascale is Very COmpleX.

*I 20 MW bytes/core
power envelope
envelope

$200M

.

8 cost Exascale
S envelope Performance
c envelope

A
S g
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: Inserting Scientific Apps into the
ez Hardware Development Process

 Hardware Architectural Simulation
— Simulate hardware before it is built!
— Break slow feedback loop for system designs
— Tightly coupled hardware/software/science
co-design (not possible using conventional approach)

Design New System
(2 year concept phase)

Synthesize SoC (hours)

. . o Cvcle Time Emulate
Cycle Time Build Autotune i y Hardware
Tune Hardware i 1-2 days RAMP
i 4-6+ years o Software m )
Software :: (2 years) (Hours) m | (hours)
(2 years)

Build application

~
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What About I/O

What about it?

-~
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L AEEE I/O tidbits
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« Defensive I/O (for ~10x higher MTTI)
— SCR to local NVRAM could supply required bandwidth
— Could also be exploited for data-intensive computing (a la Alex
Szaley)
* Analysis I/O

— More in-situ (locality aware) data analysis

— Object database storage (HDF, NetCDF) pushed into the
storage infrastructure

— MapReduce: Layout data across cluster and ship computation to
the storage (functional semantics)

» This also works with the “object database” concept

All requires a lot more discussion

(which should happen here) N
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JERSC Overall Conclusions
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« Supercomputers are power limited

: N

— Limited by end of Dennard scaling for logic
— Limited by energy cost of moving bits

Primary growth in explicit parallelism is on-chip
— 100x growth in parallelism on-chip

— 10x growth in parallelism off-chip

Need a new abstract machine model that reflects
hierarchical power costs

— Current abstract machine model has flat or 2-level costs,
which do not match technology trends

— Will require fundamental advances in technology and
system architecture

— Will result in disruptive changes to programming model
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W ERSC More Info
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« DOE Exascale

— http://extremecomputing.labworks.org/
— http://www.exascale.org/

« NERSC Advanced Technology Group
— http://www.nersc.gov/projects/SDSA
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Interconnects

=
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Interconnect Cost
(Scalable Topologies)

* Fully-connected networks scale superlinearly in cost,
but perform the best

* Limited-connectivity networks scale linearly in cost,
but introduce new problems

Number of Switch Ports in Fat-Tree

EEEEEEEEEEEEEEEEEEEEEE
CCCCCCCCCCCCCCCCCCCCCCCCC

1.E+08

9.E+07
Actual

8.E+07 - =lll=Linear

7.E+07

6.E+07

8
£ 5.E+07
o

4.E+07

3.E+07

2.E+07

1.E+07 A

o)) JE A S —— lmiﬂ==l—""/-/
g \}@P‘ ,19&*’ &° i \/b,,,q;b‘ ’9,/\62’ é)c;v“’ O@é’/ f@,@b‘ &&0‘?’ \ioxob r&xob goxgb

Processors

Office of
Science
TMENT OF ENERGY

‘
‘
H
L
‘
H
‘
>

|||‘



TS Interconnect Design Considerations

S A— for Message Passing Applications
« Application studies provide insight .......comcm

to requirements for Interconnects
(both on-chip and off-chip)

— On-chip interconnect is 2D planar },
(crossbar won’t scale!) )

— Sparse connectivity for most
apps.; crossbar is overkill

— No single best topology

— Most point-to-point message
exhibit sparse topology + often
bandwidth bound

— Collectives tiny and primarily
latency bound

- Ultimately, need to be aware of the - T . L
on-chip interconnect topology in . o
addition to the off-chip topology .-

— Adaptive topology interconnects (HFAST)

— Intelligent task migration?
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=y Technology Disruptions on the
L Path to Exas cale

Gigaflops to Teraflops was highly disruptive

— Moved from vector machines to MPPs with message passing
— Required new algorithms and software

 Teraflops to Petaflops was *not* very disruptive
— Continued with MPI+Fortran/C/C++ with incremental advances

+ Petaflops to Exaflops will be highly disruptive
— No clock increases - hundreds of simple “cores” per chip
— Less memory and bandwidth - cores are not MPI engines
— x86 too energy intensive - more technology diversity (GPUs/accel.)
— Programmer controlled memory hierarchies likely

« Computing at every scale will be transformed
* (not just exascale)

~
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